Synthesis of 1-Alkyl and 1,3-Dialkyl-2-benzimidazolones from 1-Alkenyl-2-benzimidazolones using Phase-Transfer Catalysis Technique

Gaston Vernin, Hicham Domlog, Chan Siv, Jacques Metzger

Laboratoire de Chimie Moleculaire, Associe au CNRS (L.A. 126), Faculte des Sciences et Techniques de St-Jerome, Marseille 13397 Cedex 4, France

Ahmed Kamal El-Shafei

Chemistry Department, Faculty of Sciences, Sohag, Egypt Received May 27, 1980

A general synthetic route to 1-alkyl and 1,3-dialkyl-2-benzimidazolones from 1-alkenyl-2-benzimidazolones using phase-transfer catalysis conditions is described.

J. Heterocyclic Chem., 18, 85 (1981).

Introduction.

Three methods were reported concerning the preparation of titled compounds. Davoll (1) reported that alkylation of 1-alkenyl-2-benzimidazolones with alkyl halides and sodium ethoxide in ethanol yields monoalkyl-2-benzimidazole derivatives. The second method consists of condensation of N-alkyl-o-phenylenediamine with carbonyl sources, e.g., urea (1,2), phosgene (3,4), or carbondioxide (5). The condensation of N-alkyl-o-aminobenzamide with phthalic anhydride was also reported (6); likewise the condensation of N, N-polymethylene (n = 5-12)-o-phenylenediamines with phosgen produced the appropriate 2-benzimidazolone (7). The third method of Cumper Pichering (8) depends upon direct alkylation of 2-benzimidazolone, but it leads to a mixture of mono- and dialkyl derivatives (9), thus necessitating separation by column chromatography. This method was recently used (10) for the cycloalkylation of benzimidazolone with α, ω -dihalides (X-(CH₂)_n-X) in the presence of sodium hydride in DMF at ambient temperature or with lithium hydride at 90°.

Since it has been reported that the second method involves difficulties in the selective monoalkylation of

o-phenylenediamine (11), and owing to the pharmacological importance of 2-benzimidazolones (12), we attempted to prepare a series of N-monoalkylated and N,N-dialkylated derivatives (13). We describe here an effective alkylation procedure of 1-alkenyl-2-benzimidazolones using a phase-transfer catalysis technique (14), followed by acid hydrolysis according to Davoll's method (1a).

Results and Discussion.

The alkylation of 1-alkenyl-2-benzimidazolones 1 under phase transfer catalysis conditions [alkyl halide, 50% aqueous sodium hydroxide, benzene as the organic solvent and triethylbutylammonium chloride (TEBAC) as the catalyst] leads to the corresponding N-alkyl derivatives 3 in 80-95% yields. Hydrolysis in acid medium furnishes 1-alkyl-2-benzimidazolones 4 in almost quantitative yields.

A new alkylation of 4 following the same procedure (PTC) leads to 1,3-dialkyl-2-benzimidazolones ($R_1 \neq R_2$) or the symmetric derivatives ($R_1 = R_2$) (compound 5, cf., Scheme 1). Starting with the 2-benzimidazolones 6 we were able to obtain 5. The structures of compounds 3, 4 and 5 were confirmed by spectroscopic data. The ir spec-

Scheme 1

Synthetic Route using Phase-Transfer Catalysis of 1-(α-Methylvinyl)-, (α-Phenylvinyl)-2-benzimidazolones 1, 1-Alkyl-2-benzimidazolones 4 and 2-Benzimidazolones 6.

Table 1

Preparation of 1-Alkyl-3-(α-methylvinyl) and 3-(α-Phenylvinyl)-2-benzimidazolones (3) through Alkylation with Phase-Transfer Catalysis

(1a) R-CH		R'X	(3)	M.p. °C	Yield %	Formula	Analysi	s: Calcd./F	ound %		(b)	Ir λ max cm ⁻¹
							С	H	N	(i)	(ii)	(C=O)
	2 c	CH₃I	3ac	liquid	90	$C_{11}H_{12}N_2O$	70.14	6.38	14.88	0.37	0.55	1705
							70.32	6.15	14.69			
	2d	C_2H_5Br	3ad	51	90	$C_{12}H_{14}N_2O$	71.18	6.92	13.84	0.40	0.60	1700
							71.35	6.73	13.60			
	2e	$CH_2 = CH-CH_2-Br$	3ae	20	95	$C_{13}H_{14}N_2O$	72.80	6.53	13.07	0.48	0.68	1710
							72.65	6.22	12.71			
	2f	n - C_3H_7Br	3af	liquid	95	$C_{13}H_{16}N_2O$	72.12	7.40	12.94	0.50	0.70	1705
	_						71.92	7.62	13.09			
	2g	i-C ₃ H ₇ Br	3ag	liquid	80	$C_{13}H_{16}N_2O$	72.12	7.40	12.94	0.51	0.73	1700
	-	0 ** D					72.40	7.28	12.24			
	2h	n-C₄H ₉ Br	3ah	liquid	90	$C_{14}H_{18}N_2O$	72.95	7.82	12.16	0.56	0.78	1710
	۵.	CHR					73.20	7.68	11.98			
	2i	i-C ₄ H ₉ Br	3ai	liquid	85	$C_{14}H_{18}N_2O$	72.95	7.82	12.16	0.55	0.78	1712
	۵.	0 11 011 01					73.15	7.98	12.22			
	2j	C ₆ H ₅ CH ₂ Cl	3aj	liquid	95	$C_{17}H_{16}N_2O$	77.19	6.05	10.59	0.64	0.81	1715
(11.)	2c	CILI	91	100	0.5		77.36	6.24	10.73	(iii)	(iv)	
(1b)		CH3I	3bc	108	95	$C_{16}H_{14}N_2O$	76.71	5.59	11.19	0.24	0.35	1700
R-C ₆ H	² 2d	C_2H_5Br	91. 1	70	00	0 11 11 0	76.85	5.28	11.32			
	2u	C ₂ n ₅ Dr	3bd	78	90	$C_{17}H_{16}N_2O$	77.19	6.05	10.59	0.32	0.46	1715
	20	CH, = CH-CH, Br	91	50	05	0 11 11 0	77.38	5.88	10.36			
	46	$Cn_2 = Cn - Cn_2Dr$	3be	52	95	$C_{18}H_{16}N_2O$	78.26	5.80	10.14	0.41	0.56	1710
	9f	n-C ₃ H ₂ Br	3bf	93	95	CHNO	78.39	5.59	10.30			
	41	<i>n</i> -C ₃ 11 ₇ D1	JUI	93	90	$C_{18}H_{18}N_2O$	77.61	6.47	10.06	0.41	0.56	1695
	2g	i-C ₃ H ₇ Br	3bg	78	85	CHNO	77.51	6.59	10.25	0 . 		
	-6	1 O ₃ 117D1	ong	10	00	$C_{18}H_{18}N_2O$	77.61	6.47	10.06	0.45	0.59	1710
	2h	n-C ₄ H ₉ Br	3bh	115	90	$C_{19}H_{20}N_{2}O$	77.22 77.98	6.22 6.84	9.88	0.51	0.65	1510
		11 G4119D1	UDII	110	90	C ₁₉ II ₂₀ IV ₂ U	77.98 78.10	7.02	9.58 9.66	0.51	0.65	1710
	2i	i-C₄H₀Br	3bi	59	80	$C_{19}H_{20}N_2O$	77.98	6.84	9.58	0.51	0.65	1700
		49	ODI	0)	00	G ₁₉ 11 ₂₀ 11 ₂ U	77.77	6.98	9.36 9.40	0.51	0.65	1708
	2j	C ₆ H ₄ CH ₂ Cl	3bj	70	95	$C_{22}H_{18}N_2O$	80.88	5.51	9.40 8.58	0.61	0.72	1715
	_,	-642	0.05		70	02211181120	80.61	5.65	8.72	0.01	0.72	1715
	2k	HOCH ₂ CH ₂ Br	3bk	105	95	$C_{17}H_{16}N_2O_2$	72.84	5.71	9.99	0.10	0.15	1705
		z z - -			,,,	G17**16**2**2	72.61	5.88	10.09	0.10	0.15	1700
	21	BrCH2CH2Br	3b1	liquid	95	$C_{17}H_{15}BrN_2O$	59.44	4.37	8.16	0.35	0.50	1710
		4 2		T	, ,	017-115-11120	59.72	4.48	8.35	0.00	0.50	1110
							37.12	T.TU	0.00			

tra of **3** exhibits ν C=O between 1695 and 1715 cm⁻¹, and at 1700 cm⁻¹ in the monosubstituted derivatives **4**. The dialkyl compounds **5** show ν C=O between 1695 and 1710 cm⁻¹. In the ¹H-nmr spectra, the α -methylvinyl group in compounds **3ax** was identified by the chemical shift of vinyl protons at 5.17-5.20 ppm (*cis*, multiplet) and at 5.07 ppm (*trans*, multiplet), while that of the methyl group appears at 2.25 ppm. In compounds **3bx** (R = C₆H₅) the two vinyl protons appear as two singlets at 5.50 and 5.80 ppm. The chemical shifts of alkyl substituents fixed on the nitrogen atom(s) in compounds **4** and **5** gave the characteristic signals corresponding to these groups.

The 2-benzimidazolones 3, 4 and 5 were analyzed on silica gel nanoplates hptlc 5 μ , using tlc according to classical method of Stahl. The relative values of Rf show the following order in decreasing mobility 5 > 4 > 3 >

6. In each series of compounds, a decrease in the adsorption energy of the molecule was observed as a function of the steric hindrance of alkyl groups attached to the nitrogen atom(s). The following order of decreasing mobility was observed in series 3: $C_6H_5CH_2 > i\cdot C_4H_9 \ge n\cdot C_4H_9 > i\cdot C_3H_7 \ge n\cdot C_3H_7 > CH_2CH_2 = CH_2 > C_6H_5 > CH_3$.

EXPERIMENTAL

Melting points are uncorrected and were determined using a Kofler hot stage; tlc analyses were performed either on silica gel nanoplates hptlc 5 μ or in silica gel HF 254 + 366 Merck in a saturated atmosphere; eluents are reported in Table 1. 'H-nmr spectra were recorded at 100 MHz or at 60 MHz using a Varian XL 100 and an EM 360 A spectrophotometer; ir spectra were recorded on a Perkin Elmer 225 in potassium bromide or in dichloromethane solution.

Table 1 continued

¹H-Nmr Spectra of 3 (carbon tetrachloride/TMS) (c)

Compound	δ ppm
No.	
3ac	6.97 (s, 4H), 5.17 (m, 1H), 5.07 (s, 1H), 3.30 (s, N-CH ₃), 2.24 (s, 3H)
3ad	6.95 (s, 4H), 5.20 (m, 1H), 5.07 (s, 1H), 3.83 (q, J7, 2H), 1.33 (t, J7, 3H)
3ae	6.93 (s, 4H), 6.30-5.50 (m, 1H), 5.43-4.90 (m, 4H), 4.40 (d, J6, 2H), 2.25 (s, 3H)
3af	6.97 (s, 4H), 5.17 (m, 1H), 5.07 (s, 1H), 3.77 (t, J7, 3H), 2.27 (s, 3H), 1.73 (sex, J7, 2H), 0.95 (t, J7, 3H)
3ag	7.30-6.70 (m, 4H), 5.17 (m, 1H), 5.07 (s, 1H), 4.60 (sept, J7, 1H), 2.23 (s, 3H), 1.50 (d, J7, 6H)
3ah	6.97 (s, 4H), 5.17 (m, 1H), 5.07 (s, 1H), 3.78 (t, J7, 2H), 2.23 (s, 3H), 2.0-1.10 (m, 4H), 0.93 (t, J7, 3H)
3ai	6.94 (s, 4H), 5.17 (m, 1H), 5.07 (s, 1H), 3.57 (d, J7, 2H), 2.60-1.70 (m, 4H), 0.95 (d, J7, 6H)
3aj	7.45-6.70 (m, 9H), 5.32 (s, 1H), 5.20 (s, 1H), 5.04 (s, 2H, N-CH ₂), 2.25 (s, 3H) (deuteriochloroform)
3bc	7.30 (s, 5H), 7.10-6.30 (m, 4H), 5.76 (s, 1H), 5.50 (s, 1H), 3.43 (s, 3H)
3bd	7.30 (s, 5H), 7.10-6.20 (m, 4H), 5.80 (s, 1H), 5.50 (s, 1H), 3.90 (q, J7, 2H), 1.37 (t, J7, 3H)
3be	7.30 (s, 5H), 7.10-6.30 (m, 4H), 6.30-5.60 (m, 2H), 5.50 (s, 1H), 5.40-4.95 (m, 2H), 4.45 (d, J6, 2H)
3bf	7.30 (s, 5H), 7.10-6.30 (m, 4H), 5.8 (s, 1H), 5.5 (s, 1H), 3.83 (t, J7, 2H), 1.87 (sex, J7, 2H), 1.03 (t, J7, 3H)
3bg	7.3 (s, 5H), 7.1-6.3 (m, 4H), 5.8 (s, 1H), 5.5 (s, 1H), 4.7 (sept, J7, 1H), 1.57 (d, J7, 6H
3bh	7.3 (s, 5H), 7.1-6.3 (m, 4H), 5.77 (s, 1H), 5.5 (s, 1H), 3.85 (t, J7, 2H), 2.1-1.2 (m, 4H), 1.0 (t, J7, 3H)
3bi	7.3 (s, 5H), 7.1-6.3 (m, 4H), 5.77 (s, 1H), 5.47 (s, 1H), 3.65 (d, J7, 2H), 2.23 (m, 1H), 0.97 (d, J6, 3H)
3bj	7.5-7.18 (m, 10H), 7.02-6.6 (m, 4H), 5.94 (s, 1H), 5.6 (s, 1H), 5.12 (s, 2H) (deuteriochloroform)
3bk	7.38 (s, 5H), 7.22-6.45 (m, 4H), 5.96 (s, 1H), 5.5 (s, 1H), 4.2-3.6 (m, 4H), 2.63 (s, 1H, CH) (acetone- d_{\bullet}
3bl	7.3 (s, 5H), 7.16-6.3 (m, 4H), 5.83 (s, 1H), 5.5 (s, 1H), 4.22 (t, 2H, J7), 3.63 (t, J7, 2H)

(a) Most of the obtained products were oily liquids. (b) The purity of the compounds were checked by the on silica gel HF 254 + 366. Eluents: i) benzene/acetonitrile 9/1; ii) benzene/acetonitrile 9/1; iii) benzene/acetonitrile 7/3; iii) benzene/ethylacetate 9/1; iv) benzene/ethylacetate 6/1. (c) Spectra were registered using a Varian EM 360 A spectrophotometer (60 MHz).

1-(α-Methylvinyl)-2-benzimidazolone (1a).

This compound was obtained by dry fusion of equimolar amounts of o-phenylenediamine and ethyl acetoacetate (20 mmoles) for 5 minutes at 150°, yield 75%, m.p. 121° [lit. (1a,12) m.p. 121°]; nmr (deuteriochloroform): δ ppm 12.50 (s, 1H, NH), 7.02 (s, 4H), 5.24 (m, 1H), 5.17 (s, 1H), 2.3 (s, 3H); ir (dichloromethane): ν cm⁻¹ 3430 (NH), 1740-1660 (C=O). Anal. Calcd. for C₁₀H₁₀N₂O (174.1): C, 62.5; H, 6.2; N, 14.6. Found: C, 62.3; H, 6.1; N, 14.4.

2-Methylbenzimidazole (m.p. 174-176°) was also obtained as a by-product.

1-(α-Phenylvinyl)-2-benzimidazolone (1b).

Similarly dry fusion (5 minutes, 200°) of o-phenylenediamine with ethylbenzoylacetate affords **1b**, yield 80%, m.p. 170-172° [lit. (12) m.p. 140-150° dec.]; nmr (deuteriochloroform): δ ppm 12.95 (s, 1H, NH), 7.33 (s, 5H), 7.2-6.5 (m, 4H), 6.0 (s, 1H), 5.6 (s, 1H); ir (dichloromethane): ν cm⁻¹ 3400 (NH), 1720-1680 (C=O); ¹³C-nmr (deuteriochloroform): δ ppm 155.2, 139.5, 135.2, 130.6, 129.1, 128.8, 128.3, 122.1, 131.3, 114.5, 110.1.

Anal. Calcd. for $C_{15}H_{12}N_2O$ (252.2): C, 76.3; H, 5.1; N, 11.9. Found: C, 76.3; H, 5.26; N, 11.7.

1-Alkyl-3-(α -phenylvinyl) **3ax** and 1-Alkyl-3-(α -phenylvinyl) **3bx-2**-benzimidazolones.

General Procedure.

A mixture of 1 (20 mmoles) in benzene (40 ml.), 50% aqueous sodium hydroxide (15 ml.), triethylbutylammonium chloride TEBAC (1 mmole) and alkyl halide 2 (30 mmoles) was stirred for about 1 hour at 60°. The reaction was monitored by tlc. After completion of the reaction, the mixture was left to cool and the organic layer was separated, washed thoroughly with water and dried over anhydrous magnesium sulphate. The benzene was then evaporated in vacuo. The residue which solidified on cooling was collected, washed with petroleum ether and crystallized from the appropriate solvent. Liquids were purified by column chromatography on silica gel 60 eluted with a mixture of benzene-ethyl acetate

(8:2). Results are reported in Table 1. Rf values were recorded on silica gel nanoplates hplc 5 μ with benzene-acetonitrile (a, 9:1) and (b, 7:3 v/v) and with benzene-ethylacetate (c, 9:1) and (d, 6:1) as eluents for the **3ax** and **3bx** series, respectively.

Hydrolysis of Alkenyl-2-benzimidazolones 3.

1-Alkvl-2-benzimidazolones 4.

General Procedure.

To a stirred suspension of 3 (10 mmoles) in water (30 ml.), 5 ml. of concentrated hydrochloric acid was added and the mixture was heated for 1 hour at 60°. The reaction mixture was extracted with ether; the extract was washed with water, dried over anhydrous magnesium sulphate and evaporated in vacuo. The residue was precipitated by addition of a mixture of petroleum ether:benzene (9:1). The white solid thus obtained was filtered, dried and crystallized from the precipitation mixture.

1,3-Dialkyl-2-benzimidazolones 5.

General Procedure.

The same general method was applied as that for alkylation of alkenyl-2-benzimidazolones 3, but the reaction time was raised to 4-5 hours. The symmetric dialkyl derivatives (5, $R_1 = R_2$) were easily obtained from 2-benzimidazolone 6 by adding alkyl halide in excess.

Acknowledgement.

A. K. El-Shafei wishes to express his sincere thanks to "Centre International des Etudiants et Stagiaires, Paris" for the award of a research fellowship. The authors wish to thank Mrs. G. Vernin for her careful technical assistance.

REFERENCES AND NOTES

(1a) J. Davoll, J. Chem. Soc., 312 (1960); (b) J. Davoll and D. H. Laney, ibid., 314 (1960).

Table 2
Preparation of 1-Alkyl-2-benzimidazolones (4) by Acid Hydrolysis of 1-Alkyl-, 3-(α-Methylvinyl) or 3-(α-Phenylvinyl)-2-benzimidazolones (3)

3	4	(R1)	M.p. °C (a)	Yield %	Lit. M.p. °C	Formula	Analysis: Calcd./Found %			Tlc (b) Rf		
					(lb)		С	H	N	(ii)	(iv)	
3bc	4 c	СН₃	190*	95		$C_8H_8N_2O$	64.82	5.40	18.91	0.21	0.08	
							64.66	5.56	19.07			
3bd	4d	C_2H_5	122*	95	83	$C_9H_{10}N_2O$	66.58	6.17	17.26	0.28	0.12	
							66.32	6.41	17.35			
3ae	4e	$CH_2 = CH-CH_2$	95*	95	75	$C_{10}H_{10}N_2O$	68.89	5.74	16.07	0.38	0.18	
							68.67	5.61	16.28			
3af	4f	$n-C_3H_7$ (c)	102*	95	74	$C_{10}H_{12}N_{2}O$	68.10	6.81	15.89	0.35	0.14	
							68.37	6.70	15.70			
3ag	4g	i-C ₃ H ₇	129	95	_	$C_{10}H_{12}N_2O$	68.10	6.81	15.89	0.39	0.17	
							68.29	6.66	16.06			
3ah	4h	n-C₄H,	98*	95	82	$C_{11}H_{14}N_{2}O$	69.40	7.36	14.72	0.41	0.19	
							69.13	7.51	14.63			
3ai	4i	i-C ₄ H ₉ (d)	130	95	_	$C_{11}H_{14}N_2O$	69.40	7.36	14.72	0.41	0.19	
							69.21	7.18	14.50			
3bj	4 j	$C_6H_5CH_2$	198*	95	82	$C_{14}H_{12}N_2O$	74.90	5.35	12.48	0.45	0.21	
							74.68	5.17	12.30			

¹H-Nmr Spectra of 4 (deuteriochloroform/TMS) (e)

Compound	
No.	δ ррт
4c	10.77 (s, NH), 7.3-6.8 (m, 4H), 3.47 (s, N-CH ₃)
4 d	10.55 (s, NH), 7.3-6.8 (m, 4H), 3.98 (q, J7, 2H), 1.4 (t, J7, 3H)
4e	10.94 (s, NH), 7.3-6.7 (m, 4H), 6.2-5.6 (m, 1H), 5.4-4.86 (m, 2H), 4.52 (d, J6, 2H)
4f	10.72 (s, Nh), 7.3-6.8 (m, 4H), 3.87 (t, J7, 2H), 1.82 (sex, J7, 2H), 0.99 (t, J7, 3H)
4g	10.8 (s, Nh), 7.3-6.9 (m, 4H), 4.78 (sept, J7, 1H), 1.58 (d, J7, 6H)
4h	10.8 (s, NH), 7.3-6.8 (m, 4H), 3.9 (t, J7, 2H), 1.94-1.2 (m, 4H), 0.96 (t, J7, 3H)
4i	10.84 (s, NH), 7.3-6.8 (m, 4H), 3.7 (d, J7, 2H), 2.5-1.98 (m, 1H), 1.0 (d, J7, 6H)
4 j	10.73 (s, NH), 7.27 (s, 5H), 7.1-6.7 (m, 4H), 4.98 (s, 2H).

⁽a) The melting points of products (*) were identical with those reported in the literature (1) ± 1°; compounds 3ag and 3ai were not previously prepared. (b) Cf. footnote Table 1b. (c) Ir (potassium bromide): ν (C=0) 1700 cm⁻¹, in 2-benzimidazolone (6) (C=0) 1700 cm⁻¹. (d) Ir (potassium bromide): ν (C=0) 1700 cm⁻¹. (e) Cf. footnote Table 1c.

Table 3

Preparation of 1,3-Dialkyl-2-benzimidazolones (5) by Alkylation using Phase-Transfer
Catalysis of 1-Alkyl-2-benzimidazolones (4) and 2-benzimidazolone (6)

4 or 6	2	R'X	5	M.p. °C	Yield	Formula		s: Calcd./Fo		Tlc		Ir .	'H (carbon
7 5. 0	_			-	%		С	Н	N	ii R	f iv	ν max cm ⁻¹	tetrachloride/TMS (b) δ ppm
6	2c	CH , I	5ec	102 (c)	95	C,H10N,O	66.58	6.17	17.26	0.44	0.31	1703	7.20-6.60 (m, 4H), 3.35 (s, 6H)
4f	2c	CH3I	5cf	liquid	90	C,1H,4N,0	66.77 69.40 69.21	6.31 7.36 7.18	17.35 14.72 14.66	0.58	0.44	1710	7.20-6.68 (m, 4H), 3.84 (t, J7, 2H), 3.42 (s, 3H), 1.78 (sex, J7, 2H), 0.97 (t, J7, 3H)
6	2d	C _s H _s ·Br	5dd	68	95	$C_{11}H_{14}N_{2}O$	69.40 69.57	7.36 7.56	14.72 14.90	0.58	0.47	1695	6.90 (s, 4H), 3.85 (q, J7, 4H), 1.34 (t, J7, 6H)
4 e	2d	C₃H₅-Br	5de	liquid	95	C ₁₂ H ₁₄ N ₂ O	71.22 71.40	6.92 7.11	13.85 14.07	0.66	0.55	1706	7.30-6.80 (m, 4H), 6.16-5.74 (m, 1H), 5.40-5.10 (m, 2H), 4.66-4.36 (m, 2H), 3.97 (q,
4 i	2 c	CH,I	5ei	liquid	80	$C_{12}H_{16}N_{2}O$	70.48 70.53	7.83 7.92	13.71 13.85	0.65	0.53	_	J7, 2H), 1.38 (t, J7, 3H) 7.30-6.80 (m, 4H), 3.64 (d, J7, 2H), 2.46-1.96 (m, 1H), 0.94 (d, J7, 6H)
6	2 e	CH ₃ =CH-CH ₃ Br	5ee	54	90	C13H14N2O	72.80 73.08	6.53 6.80	13.07 13.30	0.72	0.63	_	6.90 (s, 4H), 6.30-5.43 (m, 1H), 5.43-4.84 (m, 2H), 4.38 (d, J6, 2H)
6	2f	n-C ₃ H ₇ Br	5ff	liquid	85	$C_{12}H_{14}N_2O$	71.46 71.79	8.25 8.60	12.83 12.61	0.72	0.65	-	6.90 (s, 4H), 3.75 (t, J7, 4H), 1.72 (sex, J7, 4H), 0.92 (t, J7, 6H)
6	2g	i-C ₃ H ₇ Br	5gg	liquid	80	$C_{13}H_{18}N_{2}O$	71.46 71.72	8.25 8.41	12.83 13.06	0.70	0.65	_	6.95 (s, 4H), 5.0-4.2 (m, 2H), 1.53 (d, J7, 12H)
6	2h	n-C ₄ H ₉ Br	5hh	liquid	80	C12H23N2O	68.10 68.28	8.32 8.65	10.59 10.39	0.81	0.77	_	6.90 (s, 4H), 3.75 (t, J7, 4H), 2.0-1.07 (m, 8H), 0.95 (t, J7, 6H)
6	2 i	i-C ₄ H ₄ Br	Sii	50	85	C,5H,51N,0	68.10 68.33	8.32 8.52	10.59 10.37	0.80	0.77	-	6.87 (s, 4H), 3.60 (d, J7, 4H), 2.50-1.80 (m, 2H), 0.96 (d, J7, 12H)
4j	2h	n-C ₄ H ₉ Br	5hj	liquid	85	C10H20N2O	77.03 77.31	7.13 7.41	9.99 10.11	0.90	0.85	1704	7.30 (s, 5H), 7.20-6.76 (m, 4H), 5.08 (s, N-CH ₂), 4.92 (t, J7, 3H), 1.92-1.10 (m, 4H),
6	2j	C ₆ H ₃ CH ₂ Br	5jj	110	90	C21H18N2O	80.15 80.39	5.73 5.90	8.91 9.17	0.87	0.85	_	0.97 (t, J7, 3H) 7.45-7.20 (m, 10H), 7.05- 6.80 (m, 4H), 5.12 (s, 4H)

(a) Cf. footnote Table 1, b. (b) Cf. footnote Table 1, c. (c) Lit. (14) m.p. 107°.

- (2) P. Junker, B. Mees and J. Ribka, German Patent 2,052,026.
- (3) M4 Israel and L. C. Jones, J. Heterocyclic Chem., 6, 735 (1969).
- (4) H. A. Staab, German Patent 1,058,510 (1959).
- (5) J. M. Cross, C. D. Campbell and S. M. Metzger, French Patent 1,470,892 (1967).
 - (6) D. A. Heyman, J. Heterocyclic Chem., 15, 573 (1978).
- (7) R. J. Hayward and O. Meth-Cohn, J. Chem. Soc., Perkin Trans. 1, 212 (1975); and references cited therein.
- (8) C. W. N. Cumper and G. D. Pichering, J. Chem. Soc., Perkin Trans 2, 2045 (1972).
- (9) B. A. Ravai-Koshitz and Faubenstein, Zh. Obshch. Khim., 23, 1641 (1953).

- (10) R. J. Hayward, M. Htay and O. Meth-Cohn, Chem. Ind., 373 (1977).
 - (11) H. Irving and O. Weber, J. Chem. Soc., 2296 (1959).
- (12) C. Guidon, V. Loppinet and P. Greiveldinger, Soc. Pharm. Biol. Lorraine, 3, 50 (1975).
- (13) H. Domloj, These 3eme cycle, Faculte des Sciences et Techniques de St-Jerome, Marseille, 1979.
- (14) J. Dockx, Synthesis, 441 (1973); E. V. Dehmolow, Angew. Chem., Int. Ed. Engl., 16, 493 (1977); ibid., 13, 170 (1974); W. P. Weber and G. W. Gokel, "Phase Transfer Catalysis in Organic Synthesis", Springer Verlag, Berlin, Heidelberg, New York, 1977; M. Makosza and B. Serafinova, Rocz. Chem., 39, 1123 (1965); ibid., 1401, 1595, 1799 (1965).